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The effect of pressure gradient on the law of the wall 
in turbulent flow 

By HENRY MCDONALD 
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(Received 19 January 1968) 

The effect of a streamwise pressure gradient on the velocity profile in the viscous 
sublayer of a turbulent flow along a smooth wall in two-dimensional flow is 
estimated. In  the analysis, a similarity argument is used and the necessary em- 
pirical information obtained from a constant pressure flow. An allowance is 
ma.de for the departure from the wall value of the gradient of total shear stress 
normal to the wall. The results of analysis were used to generate new additive 
constants for use with Townsend’s modified law of the wall velocity profile and 
subsequently Townsend’s profile is found to be in good agreement with the 
measured velocity profiles in an adverse pressure gradient. 

Introduction 
It has been known for some time that, close to an impermeable wall, the ve- 

locity profiles in a turbulent flow can be non-dimensionalized such that the various 
profiles measured normal to the wall at  different Reynolds numbers collapse on a 
single curve. This universal curve is termed the law of the wall and has been 
found to be independent of the streamwise pressure gradient, at  least when the 
flow accelerations involved are not large. This single, well substantiated, empirical 
law has proven extremely valuable in making predictions of turbulent flow 
behaviour. For instance, the law of the wall is the corner stone of most turbulent 
skin friction laws. Coupled to the law of the wake (Coles 1956), the law of the wall 
provides a means of correlating turbulent boundary-layer velocity profiles which 
is valid even in moderate streamwise pressure gradients, a fact which has enabled 
rapid and fairly accurate integral methods of predicting the turbulent boundary- 
layer behaviour to be developed. In  addition, the presence of a universal law of 
the wall has enabled very simple techniques, such as the Preston tube, to be 
developed to measure the wall skin friction. Obviously, the law of the wall has 
proven to be of considerable practical consequence and, as a result, a number of 
investigators have considered the problem of determining the effect of increas- 
ingly large streamwise pressure gradients on this universal velocity profile. 

In the fully turbulent flow near the wall, the universal velocity profile given 
by the law of the wall has a semilogarithmic form, the velocity varying as the 
logarithm of the distance from the wall. Stratford (19594,  however, by using 
Prandtl’s mixing length to relate the mean velocity gradient to the turbulent 
shear stress and by further assuming a linear distribution of turbulent shear 
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stress near the wall, deduced that when the streamwise pressure gradient was 
large and the wall skin friction negligible, the velocity would vary as the square 
root of the distance normal to the wall (the so-called half-power law). The very 
limited experimental evidence was in quite good agreement with Stratford’s 
predictions. Townsend (1961, 1962) later carefully reappraised Stratford’s 
assumptions and after some modification showed how a closed form velocity 
profile could be deduced from a mixing length approach. Townsend’s profile 
asymptotes to the logarithmic law of the wall when the pressure gradient (or 
more precisely the gradient of turbulent shear stress normal to the wall) is small 
and asymptotes to the half-power law when either the gradient of turbulent 
stress normal to the wall or the product of this stress gradient and distance from 
the wall, is large. Three factors have to be determined before Townsend’s 
modified law of the wall can be utilized. 

The first, and most easily disposable of the three factors, concerns the co- 
efficient which governs the extent to which turbulent kinetic energy is diffused 
by pressure and velocity fluctuations. Presumably future experiments will 
determine this coefficient more precisely, but at the present time it would seem 
to be somewhat smaller than originally thought by Townsend (see Bradshaw 
1965) and consequently, for the present, it can be neglected. 

The second factor concerns a constant of integration which arises in Townsend’s 
velocity profile, the constant sometimes being termed either the ‘slip velocity ’ 
or the ‘additive constant’. This additive constant is determined by the flow in 
the viscous sublayer and, in general, is obtained by matching the velocity at the 
edge of the sublayer to the fully developed turbulent flow velocity distribution. 
In his analysis, Townsend assumed that the velocity profile in the viscous sub- 
layer would not be affected by moderate pressure gradients and so suggested an 
additive constant which is strictly correct only for the zero pressure gradient 
case. 

The third factor to be determined before Townsend’s modified law of the wall 
can be applied concerns the total shear stress gradient normal to the wall; that 
is, the rate of change with distance normal to the wall of the sum of the laminar 
and apparent turbulent shear stress. At the wall, the equations of motion show 
that the gradient of total stress normal to the wall (hereafter termed simply the 
stress gradient) is equal to the streamwise pressure gradient, and many authors 
have assumed that this relationship also holds in the fully developed turbulent 
flow region near the wall. Unfortunately, as Townsend points out, while there is 
experimental justification for assuming a linear stress distribution in the fully 
turbulent flow, the stress gradient is, in general, not equal to the pressure gradient 
and the two gradients can, in many instances, be considerably different. The 
inequality in the two gradients prescribes, via the equations of motion, the local 
flow accelerations, and hence the term ‘inertia effect’ is used to describe the 
difference between the stress and pressure gradient. Townsend suggests that, 
under certain circumstances, the stress gradient is determined by conditions 
pertaining further from the wall. Naturally this added complication is very 
inconvenient as a great deal of the utility of the law of the wall lies in the fact that 
it  is dependent only on local flow conditions, such as skin friction, and not on the 
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flow history. Townsend’s proposal requires that, in order to determine the $tress 
gradient, a running calculation of the flow away from the wall has to be per- 
formed, with all the attendant difficulties that this incurs. Indeed in many 
instances such a running calculation cannot be performed so that the modified 
law of the wall could not be evaluated. 

Recently, in developing numerical solutions to the boundary-layer equations 
of motion, Meiior (19663) has proposed an eddy viscosity distribution which 
applies in the viscous sublayer. Outside the sublayer Mellor’s suggested distri- 
bution corresponds to the conventional distribution of Prandtl’s mixing length 
varying linearly with distance normal to the wall. Mellor further suggested that 
if the stress gradient were equated to the pressure gradient, then this eddy 
viscosity distribution could be used to estimate the pressure gradient effect on 
the additive constant which is missing from Townsend’s analysis. However, it is 
clear that since the stress and pressure gradient are not, in general, equal in the 
fully turbulent flow adjacent to the sublayer, some doubt must be felt about using 
Mellor’s additive constants, although they might be expected to represent an 
improvement over the constants assumed by Townsend. 

Lastly, Perry, Bell & Joubert (1966) and Perry (1966) have shown that, while 
both the logarithmic and half-power law of the wall are observed in measured 
boundary layers in roughly the appropriate areas (the half-power variation of 
velocity seemingly occurs closer to the wall than might have been expected from 
Townsend’s analysis), Townsend’s additive constants apparently do not agree 
with the measurements. While the findings of Perry et al. are open to some 
criticism, among other things, on the grounds that they have equated the stress 
and pressure gradients, nevertheless, there did appear to be reason to question 
the accuracy of Townsend’s additive constants. Mellor’s (1966 3) supposedly 
more accurate additive constants mentioned previously do not satisfactorily 
explain the discrepancies observed by Perry et al. either. 

Accordingly, in the present note the whole process of deriving the additive 
constants was re-examined in an attempt to resolve what was thought to be the 
observed discrepancies. In the light of the preceding discussion, it was felt that 
attention ought to be devoted to relaxing the assumption made by Mellor that 
the stress and pressure gradients are equal in the sublayer, and this has been 
done. 

Analysis 
In  order to calculate the velocity using a mixing length hypothesis, two 

quantities must be known. The first is the shear stress and the second the mixing 
length. When the distributions of these two quantities are known, the velocity 
profile may be obtained by integration. As a result, the analysis is divided into 
three sections, the first section being concerned with the mixing length distri- 
bution across the sublayer. The second section is concerned with the near-wall 
stress distribution, and, as mentioned in the introduction, special emphasis is 
placed on developing a stress distribution which satisfies the wall boundary con- 
dition of equal stress and pressure gradient but which is (arbitrarily) linear in the 
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fully turbulent flow outside the sublayer. In  the third section, the velocity profile 
is obtained by numerical integration. 

Distribution of mixing length across the viscous subluyer 
In  the literature, there have been a number of suggested distributions of both 
mixing length and eddy kinematic viscosity across the viscous sublayer. These 
suggestions have been reviewed by both Rotta (1962) and Hinze (1959) and 
objections raised on one count or another against most of the proposals. More 
serious, perhaps, from the present point of view, is that almost all of the suggested 
distributions suppose a unique relationship between the mixing length or eddy 
viscosity and the law of the wall similarity co-ordinate normal to the wall. This 
leads to obvious difficulties in the case of Stratford’s ( 1 9 5 9 ~ )  zero wall stress 
boundary layer, a boundary layer which in the present note is regarded as the 
asymptotic case of departure from the law of the wall. In Stratford’s case, the 
law of the wall co-ordinate is zero throughout the layer. Evidently, a mixing 
length or eddy viscosity distribution based on a law of the wall co-ordinate must 
be rejected in the present circumstances if the proper asymptotic behaviour of 
the modified law of the wall is to be obtained. 

In  his approach, Mellor (1966b) suggested a new simila,rity co-ordinate for the 
eddy viscosity distribution normal to the wall. This new similarity co-ordinate 
reduces to the law of the wall co-ordinate when the pressure gradient is small and 
does not degenerate to zero when the wall friction disappears. The eddy viscosity 
distribution across the sublayer is subsequently derived from velocity profile 
measurements in a constant pressure flow and expressed only as a function of 
the new similarity co-ordinate. The resulting distribution of eddy viscosity is 
supposed valid when the streamwise pressure gradient is nonzero. In  deriving 
this distribution, Mellor used only dimensional arguments, pointing out that 
alternative similarity co-ordinates do not correspond to the velocity profile 
similarity behaviour observed in the absence of a pressure gradient. While the 
correct behaviour in the absence of a pressure gradient obviously fulfills a neces- 
sary condition of any new similarity co-ordinate, unfortunately it is not a 
sufficient condition. It is unlikely that, in the present state of experimental and 
theoretical knowledge of the turbulent flow near a wall in the presence of large 
pressure gradients, the question of the proper similarity co-ordinate can be 
rigorously resolved. However, it is found in the present analysis that a slightly 
different argument, based on the mixing length concept, leads to the same 
similarity co-ordinate but with perhaps a clearer indication of the approxima- 
tions involved. As in Mellor’s approach, the zero pressure gradient experimental 
evidence is used to derive the variation of the von KLrm&n constant, K (and hence 
the mixing length distribution) which, when expressed in terms of the new 
similarity co-ordinate, is supposed independent of pressure gradient. In practical 
terms, the differences between velocity profiles obtained using either mixing 
length or eddy viscosity distributions are negligible provided the stress distri- 
butions are the same in both cases, since both Mellor’s and the present distribution 
are derived from, and adjusted to reproduce, the same zero pressure gradient 
data. The present author simply prefers to work in terms of a mixing length since 
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it would seem to have a better physical basis, especially when interpreted as the 
dissipation length scale of the turbulent kinetic energy (Townsend 1961). 

The velocity distribution near the wall is functionally expressed as 

u = f ( y ,  u, P,  7 ,  a7/dy,.. .), (1) 

where 7,  the total shear stress is defined as 

7 = p v--u'v' [: -1 
with p and v, the fluid density and kinematic 

( 2 )  

viscosity, supposed constant 
throughout the flow. The velocities in the x and y directions, that is parallel to 
and normal to the wall, are denoted by u and v respectively. ,4 prime denotes a 
fluctuation and a bar a time mean average. It is supposed that only the flow 
variables given in (1) influence the velocity field and the justification for this 
assumption must reside in the observed velocity profile behaviour. This point 
will subsequently be briefly considered further but for the moment (1) is ac- 
cepted. If the stress gradient ar/ay is near constant (2: r / y ) ,  or at  least ex- 
pressible in terms of y ,  v, p and 7, then 

where us is some scale of velocity. The conventional law of the wall similarity 
co-ordinate is obtained from (3) by assuming that the total stress is constant 
across the wall region and this gives 

where 

When the total stress is not constant across the wall region, Mellor's similarity 
co-ordinate may be obtained from (1) again by either assuming a constant stress 
gradient or a stress gradient which is a function only of y, u, p and 7,  and in 
addition noting that 7 may be replaced in (1) by au/ay. With these assumptions 

which gives 

Thus a new similarity co-ordinate, Y ,  may be defined as 

y = y (;$ 
where ( K ~  Y ) 2  is identical to the similarity parameter Csuggested by Mellor (19663). 
The velocity scale us is at present undefined. It is evident from (2) that replace- 
ment of r by au/ay in (1) is valid at least very close to the wall where &' is 
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negligible (the wall boundary conditions also suggest a local constant stress 
gradient in this same region). In  addition at the other extreme, in the fully 
turbulent wall flow where the viscous contribution to the total stress may be 
neglected, it is thought that both a mixing length concept and a constant stress 
gradient are reasonable assumptions (Stratford 1959a). Since the mixing length 
concept gives 

(9) 

hence when K ,  the von K&rmBn constant, is independent of y, as indeed it appears 
to be in the fully turbulent near wall flow, it is a reasonable assumption to replace 
7 by av,/ay in ( 1 ) .  At any rate, lat.er in the present note the turbulent velocity 
profiles predicted by the linear mixing length and stress distribution assumptions 
will be evaluated so that this point may be checked. However, it would appear, 
on the basis of the presently available information, that (7)  would be valid both 
at the inner edge of the viscous sublayer and in the fully turbulent flow and 
consequently the choice of Y for the similarity co-ordinate of the entire wall 
region is not unreasonable. 

Before proceeding, it is interesting to note that if the constant stress gradient 
were equated to the pressure gradient then (1) would be identical to  the similarity 
proposal of Perry et al. (1966). Perry et al. subsequently verified their similarity 
proposal using experimental evidence and therefore this verification adds weight 
to the present work. However, two restrictions on this experimental verifica- 
tion must be mentioned. The first is that the experimental evidence is generally 
available only for either weak pressure gradients or for the fully developed 
turbulent flow above the viscous sublayer. The second restriction is that more 
recently Perry (1 966) has interpreted certain experimental evidence as suggesting 
an effect of the streamwise rate of change of pressure gradient on the velocity 
profile. In  the present analysis this amounts to suggesting the inclusion of a 
a27/&~y term in (1).  Perry's interpretation is disputed later in the present note 
on the basis of additional experimental evidence. Nevertheless, the possibility 
that, when the mean flow in the sublayer is changing rapidly in the streamwise 
direction, additional terms ought to be included in (1) cannot be ruled out. As has 
been pointed out by one of the referees, f ( Y ) ,  without loss of generality, may be 
related to f(( - u " ) h ~ / v ) ,  that is to a yf based on the local Reynolds stress. 
Written in this form it is not difficult to doubt that the turbulence in the sublayer 
is really specified by only a local value of this turbulence Reynolds number. 

To continue, if the similarity co-ordinate Y is accepted then the von K k m h  
constant K ,  which must vary across the sublayer, may be expressed as SL function 
of Y only. The appropriate form of this function is obtained from the zero pressure 
gradient sublayer velocity profile. Using (2), ( 5 ) ,  (8) and (9) the velocity profile 
gradient is written 

au 7/pv __ - -~ 
&J 1 + K 2 y 2 '  

Equation (10) can be solved for K in the zero pressure gradient case since in this 
instance the total stress is nearly constant across the layer and the mean velocity 
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profile known quite accurately from measurements. Hence (10) yields the em- 
pirical result that 

= 0-00714Y+exp{3(Y-9)} ( Y  < 9), 

= 1  (Y 2 9), 
where ic0 is the conventional von KBrmBn constant, appropriate to the fully 
developed turbulent flow. Equation (11) is plotted in figure 1 and has been 
arranged to give K varying with ?J& in the region very close to the wall in keeping 

Equation (11) ( x / K , ) ~  = 0:0074Y+exp(3(Y-9)) 

I I I Y  
0 

Distance from the wall, Y = y (l/vdu/dy)h 
FIGURE 1. Distribution of the von K&rm&n constant across the sublayer. 

with Townsend’s (1956) remarks that should vary with y3 in the region of the 
wall. The problem of determining the distribution of total shear stress in the 
viscous sublayer is now examined. 

~ i s ~ r ~ b ~ € ~ o n  of shear stress across the viscous sublager 
The f i s t  boundary condition imposed on the total shear stress is obtained from 
the equations of motion together with the wall no-slip condition, and requires 
that the stress gradient normal to the wall and the streamwise pressure gradients 
be equal at  the wall. However, on the basis of experimental evidence (see for 
instance Sandborn & Slogar 1955; Spangenberg, Rowland & Mease 1967; 
Bradshaw 1966) it is known that the stress and pressure gradients quickly 
become unequal as distance from the wall is increased. 

Mellor (1966b), however, did demonstrate theoretically that, if this equality 
of stress and pressure gradient were assumed, considerable departures from the 
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constant pressure velocity profiles could be obtained in the presence of large 
streamwise pressure gradients, even across the viscous sublayer. On the basis of 
Mellor's findings, it would seem that the additive constant in Townsend's modi- 
fied law of the wall, obtained by matching the velocity at  the sublayer edge to 
the modified law of the wall, would depend on pressure gradient when the pressure 
gradients were large. In  view of the utility of the modified law of the wall, it is 
therefore of considerable interest to see if Mellor's findings are substantiated 
when a more realistic stress distribution is specified. 

On the basis of Schubauer & Klebanoff's (1951) measured turbulent stress 
distributions, Townsend (1961, 1962) was led to suggest that near the wall the 
stress gradient was indeed constant, but not equal to the streamwise pressure 
gradient. The additional experimental evidence of Newman (1951), Sandborn & 
Slogar (1955), Bradsliaw (1966) a.nd Spangenberg et aE. (1967) all support Town- 
send's suggestion of a constant stress gradient in the wall region. Thus it would 
appear legitimate to require the stress distribution to become linear as distance 
from the wall is increased but not to require that the gradient of this linear 
distribution be equal to the streamwise pressure gradient. 

The simplest stress distribution which can be suggested is a Taylor series 
expansion in terms of the wall boundary conditions. Unfortunately such a series 
is not convergent at sufficiently large distances from the wall for the present 
purposes. An alternative series having the required properties is given by 

where the a,  ma,y be determined from the wall boundary conditions as 

a, = (ar/a&! = dp/dx, 

a, = (a2T/ay2)(,: = 0 ,  

a2 = (a37/aY3),, = (7,d7,, /d.) / (2pv2T~),  (15) 
and so on. From dimensional considerations the argument of the hyperbolic 
tangent in (12) must be dimensionless and in addition, if Y is supposed to be the 
wall layer similarity co-ordinate, then 

TY = f 1 ( Y ) .  

TY = b y ,  

It is convenient to introduce the parameter b defined by 

so that using (8) and (10) gives 

bib," = T / V d l +  K 2 Y 2 ) t  (18) 

and 'lvi = ~ t , ( ~ W / P 2 P ,  (19) 
where the subscript w indicates a value when y is zero. Thus the search is for the 
distribution of b as a function of Y so that (12) can be used to provide the stress 
gradient. As before, the precise form of the functional dependence of b on Y is 
empirically obtained from the measured velocity profiles in the sublayer as 
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follows: Coles (1956), among others, has shown that a law of the wall in the form 
of u+ = f (y+) when inserted into the equations of motion gives the stress gradient 

(20) 
as 

where duJdx has been written as u:. This stress gradient may be compared with 
the stress gradient obtained from (12) and since it is known empirically that the 
sublayer velocity profile in the absence of pressure gradients is given quite 

(21) 
closely by u+ = 14 tanh (y+/l4), 

(suggested by Rannie (1956) and demonstrated by Hinze (1959)) it follows that 
empirically 7 = 7ul ( =  a constant) and in the case where the velocity profile is 
given by (21) that is, when dp/dx M 0, b, has a value of 1/14. Hence placing 
7 = vW in (18) permits the stress gradient to be specified in terms of Y ,  the wall 
boundary conditions and the presently undetermined constant b,. 

In  the light of Townsend’s (1961, 1962) work, it would be expected that the 
(constant) stress gradient occurring in the fully turbulent flow would, in many 
instances, be the result of conditions pertaining further from the wall. Necessarily 
then, the asymptotic constant gradient given by (12) for bY > 2.0, say ,would 
have to equal this specified gradient, and this allows b, to be determined. Viewed 
in this manner, the constant b, serves to fair any given linear stress distribution 
into the wall shear stress, T,,, such that the wall boundary conditions are satis- 
fied in a reasonable manner. Conversely, when the pressure gradient is small and 
historic effects on the stress distribution negligible, the constant pressure value 
of b ,  could serve to relate the stress and pressure gradient. 

aT/ay = ap/ax + pu, u: u+2, 

The calculated velocity profiles in the region of the wall 
Some computational and non-dimensional considerations. Since the mixing 

length and total stress distribution in the wall region are now considered known, 
the velocity profile can be obtained by integration of (10). The details of this 
procedure are now given. 

From (12), the total stress gradient is 

a7 
- = ao+a,tanhBy+a2tanh2b1’+ .... 
aY 

For values of the argument b Y greater than about 2-0 the hyperbolic tangent has 
a value of almost unity, and so in this region the stress gradient is nearly constant. 
From (22), this gives 

a7 - = a  = uo+a,+a,+ ... 
a?/ 

which integrates to give 7 = ay + 70 ,  (24) 

where 70 is the intercept of the linear total shear stress distribution with the 
y = 0 axis. Since the stress gradient in the sublayer is not equal to a, 70 is not 
equal to 7,, the wall shear stress, although 70 is not expected to be significantly 
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different from T,, except when the stress and press gradients are considerably 
different and the pressure gradient is large. In  his analysis, Townsend (1961, 
1962) has equated T~ to T ~ .  Continuing, for bY  > 2,  the velocity gradient is given 
by (24) and (lo), on neglecting the laminar stress contribution in the fully 
turbulent rkgime, as -- aU ( U y + T o ) *  - 

aY P+,OY ' 
which integrates to 

where (27) 

and so on in the case 70 > 0. The subscript j indicates some point where b Y > 2, 
and B is the aforementioned additive constant. Equation (26) is, of course, 
Townsend's (1961) modified law with the slight difference that T~ has not been 
equated to T,, the wall stress. 

In the sublayer, the velocity profile is obtained by integration of (lo),  using 
(S), (l l) ,  (18) and (22), given values of the boundary conditions and b,. Simple 
analytic integration of these expressions was not found possible, so a numerical 
procedure was adopted and programmed for the Univac 1108. Integration was 
carried out in the Y-plane out to a Y of 10. At this station, the now linear stress 
distribution was extrapolated back to y = 0 to  give T ~ .  Using this value of T,,, 

equation (26) was evaluated at Y = 10 to give B. 
Two non-dimensional velocity profile presentations are pertinent to the present 

study. The first is, of course, the conventional law of the wall presentation of u+ 
us. y+ and the second corresponds to Mellor's (1966 b )  pressure velocity up which, 
as in Mellor's note, is used to define a u* and y* as follows 

where 
u* = U/UP' y* = yu,/v, 

up = ( V a o l P ) ~  
and up, the pressure velocity is analogous to u,, the frictional velocity. The non- 
dimensional form of the modified law of the wall in conventional co-ordinates 
becomes 

Af 4A (ay++A)h-AB 
KO ( (my+ + A)* + A+ 

u+ = 

(30) 
2 + - [ ( a y + + A ) & - A + ] + B +  (ay+A > 0, A > 0), 

Kn 

where 

KO 
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Obviously, (30) is not a suitable form of the velocity profile when the wall shear 
stress is small (or the pressure gradient very large), so in this case the velocity 
profile is expressed as 

where 

Similar non-dimensional forms can be obtained from (26) when 7, < 0. Placing 
A = 1.0 in (30) results in the law of the wall in the form given by Townsend 
(1961)) while placing A = 1, C = 1 in (32) gives the law of the wall in the second of 
the two forms given by Mellor (19663). The results of the calculations are now 
presented in these non-dimensional forms and discussed. 

The calculated velocity projiles. Velocity profiles were computed for a wide range 
of pressure gradients and are shown in figures 2 and 3 for the case where the 
stress gradient a and pressure gradient a,, are equal, the case treated by Mellor 
(1966 b). In  performing the calculations the asymptotic value of the von KhrmBn 
constant K,, was taken to be 0.41. Not unexpectedly, these computed profiles were 
found to be in excellent agreement with Mellor's calculations in all instances. In  
figure 4 velocity profiles are shown for three typical streamwise pressure gradients 
a,, where for each of the three pressure gradients, three stress gradients a have 
been assumed. The computed profiles show clearly that the variation in total 
stress gradient across the sublayer has only a very small effect on the sublayer 
velocity profile. The principal reason for departure from the law of the wall in 
the sublayer is thus seen to result from the direct effect of the pressure gradient. 
One proviso must be added to the previous statement and this concerns the 
parameter b,, which will now be discussed. 

The constant b, enters the calculation of the velocity profile from two different 
ways. First, the relationship between the stress and pressure gradient serves to 
determine b,. Obviously this condition itself does not influence the previous 
finding concerning the sublayer velocity profile. However, the numerical value of 
b,m enters the calculation in a more subtle manner, for it may be recalled that the 
parameter b, governed the distribution of shear stress across the sublayer and 
consequently to specify b i t  was necessary to introduce a value for b,. In  the 
calculations presented in figure 4 the constant pressure value of b, of 1/14 was 
used. Subsequently it was found that when the pressure gradient was large, a 
change in b, of 11.5 yo produced a change in calculated u+ of less than 0.5 % at 
a y+ of 150. This small change in u+ is obviously negligible so it may be assumed 
that the results presented in figure 4 are insensitive to the actual numerical value 
taken for b, and thus have a general validity. 

The finding that the so-called inertia effects are small in the sublayer does not 
imply that the additive constant B+ and the stress ratio constant A depend only 

2 1  Fluid Mech. 35 
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Distance from the wall, (ye)* = - -~ (5 (12)”)” 
FIGURE 3. Effect of pressure gradient on the velocity profile near the wall. A square root 

plot,. Strem gradient a = pressure gradient a,, = (v/pu:) (dp/dz). 
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FIGURE 4. Effect on the velocity profile of the variation in the stress gradient 
across the sublayer. 

v dP 
pu; dx Pressure gradient, a, = -~ - 

FIGURE 5.  Effect of stress gradient on the constant A. Note that when u2 = 0, A = 1.0 and 
also when a, = 0, A = 1.0. 

21-2 



324 Henry McDonald 

on the pressure gradient. Indeed the opposite is true; that is, since the velocity 
at the edge of the sublayer does not vary appreciably with the stress gradient a 
when the pressure gradient a,, is fixed, it follows from their definitions that A and 
B+ must vary with the stress gradient. A and B+ are readily obtained from the 

" 
0.01 002 0.05 0.1 0.2 0.5 1.0 

v dP 
pu," dx 

Pressure gradient, a, = - - 

FIGURE 6. Effect of pressure gradient on the additive constant B+. 

0-01 0.02 0.05 0- 1 0.2 0 5  1.0 

Pressure gradient, a, 

FIGURE 7. Effect of pressure gradient on the location of the sublayer edge ( Y  = 10.0). 
Stress gradient a = pressure gradient a,. at = a3 = 0, Y = y+(au+lay+)& = 10. 

computed velocity profiles and their variation with stress and pressure gradient 
is presented in figures 5 and 6. Obviously approximate values of A and B f  may 
be obtained from any standard set of constants by assuming that the velocity at  
the edge of the sublayer u f ,  say at  a Y of 10.0, depends only on pressure gradient. 
To enable this procedure to be carried out it is necessary to have an estimate of 
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thelocationof the outer edgeof the sublayer in yf co-ordinates and thisis presented 
in figure 7. 

Having established sublayer velocity profiles the next step is to use these 
profiles in conjunction with the modified law of the wall and to note any dis- 
crepancy between prediction and experiment. 

Comparisons with measured profiles 
A great difficulty arises in attempting to compare predicted and measured 

turbulent boundary-layer velocity profiles near a wall. This difficulty arises 
because the wall shear stress rW must be known before any meaningful com- 
parisons can be made. In  the literature, there is apparently not one case where 
significant pressure gradient effects on the law of the wall could be expected and 
where both the velocity profile and skin friction have been measured directly. 
Indirect measurements of skin friction have been made, using such devices as 
the Preston or Stanton tube or a sublayer fence, in circumstances where a de- 
parture from the law of the wall might be expected. In  the most reliable cases, 
the Preston or Stanton tube used was checked against a sublayer fence (see Pate1 
1965), on the assumption that the sublayer fence calibration would not be 
subject to a pressure gradient effect, since, so it was thought, the velocity profile 
in the sublayer would be insensitive to the pressure gradient. The result of both 
the present and Mellor’s (19663) investigation would indicate that the velocity 
profile in the sublayer could vary from the constant pressure distribution by a 
significant amount when the pressure gradient was large. It would therefore 
seem that the sublayer fence with a zero pressure gradient calibration could not 
be used to measure skin friction in the presence of large pressure gradients. For 
instance, on the basis of figure 2, when the pressure gradient parameter, ao, is 
0.1 (a large but not improbable pressure gradient), a zero pressure gradient 
calibration would indicate a friction velocity u, approximately 1.25 times too 
large if the effective centre of the device were at yf of 10. This, in turn, would 
lead to an indicated skin friction of more than 1-5 times the actual friction if the 
present work is to be believed. In  addition, the pressure gradient parameter, ao, 
is dependent on the cube of the friction velocity, so if the friction velocity were in 
error by 25 yo it would be then thought that the pressure gradient parameter, 
ao, was 0.05 instead of 0.1. The only fortunate feature of these findings is that 
when eventually the sublayer fence (or any similar skin friction meter operating 
submerged in the sublayer) is calibrated for use in a large pressure gradient, the 
additional calibration factor will be the pressure gradient parameter, ao, and 
not, as could so easily have been the case, the stress gradient parameter, a. 
However, the problem remains as to what to do concerning the available velocity 
profiles and how to compare them with predictions. 

If a rigorous course of action were to be pursued, the comparison between 
theory and experiment would have to be abandoned at this point. Approximate 
corrections to the skin friction to account for the pressure gradient can, of course, 
always be devised, but to a considerable degree these corrections beg the question 
of the effect of pressure gradient on the law of the wall. However, for the small 
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pressure gradient case, a, > 0.02, the velocity profile close to the wall in the 
region of y+ = 50 is not appreciably different from the conventional law of the 
wall, as may be seen from figure 2. Accordingly, skin friction coefficients de- 
termined by one way or another, assuming the conventional constant pressure law 
to hold in this region, would not be expected to be significantly in error. At  the 
other extreme, when the pressure gradient parameter, ao, is very large, a, > 1-0, 
the theoretical profiles are insensitive to the skin friction, as can be seen from 
figure 3; skin friction in this co-ordinate frame only influences a, and not the 
co-ordinates themselves. As a result, in all but one test series, the values of skin 
friction quoted by the actual investigator were taken a t  face value. The one ex- 
ception was in the case of Newman’s (1951) measurements where, as the boundary- 
layer developed towards separation, sufficient, apparently quite accurate, hot- 
wire measurements of turbulent shear stress were available so that an extra- 
polation down to the wall could be performed. Newman did, in fact, perform 
this extrapolation but in doing so used the condition that close to the wall the 
stress and pressure gradients would be equal. As has been pointed out frequently 
in the present note, this condition only holds at the wall and not close to the wall, 
particularly in these cases where the pressure gradient is changing rapidly. The 
present author re-performed the extrapolation at  stations D,  E,  P and G without 
neglecting the inertia effects, and obtained slightly different answers for the wall 
stress. These new values for skin friction lay approximately mid-way between 
Newman’s extrapolated values and the values obtained from the Ludwieg- 
Tillman skin friction law. 

The problem of determining the stress gradient, a, pertaining to a measured 
velocity profile, further complicates matters. In  most cases this stress gradient 
is simply not known. Where possible an estimate of the stress gradient was made 
i n  accordance with (23) by graphically differentiating the skin friction distribu- 
tions and using a value of b, of 1/14. In  cases where the skin friction distribution 
was not known, the best that could be done was to present theoretical profiles 
for the possible extreme conditions that the stress gradient could have had. In 
view of all these unknowns, there did not seem to be much point in making 
prolonged comparisons between theoretical and measured profiles, and only a 
fairly limited sample is presented. 

First of all, an almost random selection of six of the more recently measured 
velocity profiles in an adverse pressure gradient was made. These profiles were 
obtained from the work of Perry (1966)) Spangenberg et al. (1967), Patel (1965) 
and Stratford (1959b) and were all plotted in terms of u* and y*, since these 
co-ordinates do not involve a knowledge of the surface shear stress. In addition, 
the main area of interest is not in the region very close to the wall where the 
velocity distribution is sometimes not even appreciably different from the law 
of the wall, but in the region further from the wall where significant departures 
from the law of the wall have had the opportunity to develop. Since these de- 
partures from the logarithmic form have a square root dependence, it seems only 
natural to plot the profiles on a square root abscissa. 

In the experiment of Perry (1966)) no measurements of either surface shear or 
the turbulent shear stress distribution normal to the wall were made. An estimate 
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of the surface shear was obtained by Perry by fitting the measured profiles to the 
logarithmic law of the wall, and the present author obtained an estimate of the 
stress gradient by using b, = 1/14 in (23), together with a graphical evaluation of 
the experimental drw/dx. The resulting comparison between Perry’s measure- 
ments and the theory is shown in figure 8. As mentioned earlier in deriving this 
modified law of the wall, Townsend (1961) included the effect of pressure velocity 

0 2 4 6 8 10 12 

Distance from the wall, (y*)* 
FICVRE 8. A comparison between measured velocity proses of Perry and theory. Theory: 
aO = 0.0037; __ , a = 0.00256, B = 0; -*-a- , a = 0.00256, = 0.2. Asymptotic 
half power law: -.-, a = 0.00256, B = 0; -. .-, OL = 0.00256, B = 0.2. Experiments 
of Perry (1966); a, = 0.0037; 0, station z = 2.5 ft.; +, station z = 4.0 ft. 

- 

diffusion of turbulent kinetic energy, and the effect of this additional term is also 
shown in figure 8. In  calculating the pressure-velocity diffusion contribution, 
Townsend’s suggested value for the governing coefficient B (Townsend’s ‘I?’) 
of 0.2 was taken. In all the calculations performed, the sublayer was supposed 
unaffected by this additional pressure-velocity diffusion contribution. It will also 
be recalled that the asymptotic form of Townsend’s modified law of the wall, 
(26), when the product ay is much larger than ro is simply 

These asymptotic profiles have been evaluated for both cases of negligible and of 
non-negligible pressure velocity diffusion of turbulent kinetic energy and are also 
shown in figure 8. 

In  the experiments of Spangenberg et at. (1967), the turbulent shear stress 
gradient could be deduced from direct measurements of the shear made using a 
hot-wire anemometer. The surface shear stress was in this case, however, obtained 
by fitting the measured velocity profiles to the law of the wall. Nevertheless, 
taking the measured gradients and the quoted wall stress, the resulting compari- 



328 Henry McDonald 

sons between theory and experiment are shown in figure 9. Also shown in 
figure 9 is the effect of allowing for pressure-velocity diffusion of turbulent kinetic 
energy, together with an illustration of the effect of equating the stress and 
pressure gradients. An asymptotic velocity profile is shown, for comparative 
purposes, in the case of equal stress and pressure gradients. 

Distance from the wall, (y*)t 
FIGURE 9. A comparison between measured velocity profiles of Spangenberg - et aZ. and 
theory. Theory: a,, = 0.04; -----, a = 0.04; ------, a = 0.02, B = 0.0; 
a = 0.02, B = 0.2. Asymptotic half-power law: , a = a,, = 0.04. Experiments of 
Spangenberg et aZ. (1967) : 0, station 130 distribution A ; + , station 80 distribution A ; 
a N 0.04; a = 0.02. 

Distance from the wall, (y*): 

FIGURE 10. A comparison between a measured velocity - profile of Patel and theory.Theory : 
a,, = 0.09; -..-, a = 0.09; --, 0: = 0.045, B = 0 ;  -.-, a = 0.045, B = 0.2; 
Experiments of Patel (1965) ; 0, a,, = 0.09, a unknown. 

I n  Patel’s (1965) experiments, the surface stress was determined using a 
sublayer fence with a correction for pressure gradient included. The correction 
applied by Patel is, of course, open t o  question, but lacking anything nearly as 
accurate, the quoted shear stresses have been without modification. Unfortun- 
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ately, no information is available from Patel’s measurements to enable an esti- 
mate of the stress gradient to be made, even according to the procedure used in 
Perry’s (1966) case. In  the light of the measured stress gradients of both Spangen- 
berg et al. (1967) and Newman (1951), it  would be expected that the stress 
gradient in Patel’s case would be nearer 0.501, than ao. However, in figure 10 
measured velocity profiles are compared tvith theory for both these values of 
stress gradient, and the results give an indication of the inaccuracy which results 
from being unable to determine the stress gradient rigorously. 

0 2 4 6 a 
Distance from the wall, (y*)t 

FIGURE 11. A comparison between a measured velocity profile of Stratford and theory. 
_ _ _  , calculation performed by Mellor (19663), a, = a = 2.0; - , present calcula- 
tion, a = 0.25, a, = 0.5, B = 0.0; -.-.-- , present calculation, a = 0.25, a, = 0.5, 

= 0.2; 0, measurements of St,ratford, reproduced from Mellor (19666), a,, and a 
unknown. 

- 

In  Stratford’s (1959 b) experiments, the wall stress was nominally zero and once 
again the stress gradient unknown. As in Patel’s case, the velocity profiles were 
calculated for a stress gradient equal to 0-5a0 and ao. Stratford’s nominally zero 
surface shear stress can only be regarded as a very approximate figure in the light 
of the considerable difficulties involved and the crude method Stratford was forced 
to use to determine when the point of zero skin friction has been obtained. 
Mellor (1966b) suggested a value of a. (which is tantamount to suggesting a skin 
friction value) for a particular velocity profile, and, in the present note, Mellor’s 
suggestion is reproduced and compared with a profile calculated by arbitrarily 
using a slightly larger skin friction. The comparisons are presented in figure 11. 

In  general, the agreement between the measured and calculated velocity pro- 
files, with or without the pressure-velocity diffusion contribution, is quite 
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good. The inclusion of the pressure-velocity diffusion term had only a very small, 
favourable, effect on the comparisons. This small favourable effect must be 
weighted against the uncertainties in the stress gradient which could have had 
the same result. As a result, it seems advisable to postpone including the pressure- 
velocity diffusion effect on the velocity profile until more direct evidence as to its 
existence can be obtained. 

Recently the work of Perry et al. (1966) ,  and Perry (1966) ,  has cast consider- 
able doubt (unwarranted as it turns out) on, among other things, the additive 
constants used in Townsend’s modified law of the wall. Indeed, it was thought 
by the present author at one time that a more precise evaluation of the additive 
constants, such as has been undertaken in the present note, would meet the 
objections raised by Perry and his co-workers, and this thought provided some 
stimulus for the present work. However, the results of the present investigation 
have shown, in agreement with Mellor (19666) ,  that in the low to moderate 
pressure gradient range under question by Perry et al., the additive constants 
used by Townsend were, at  least theoretically, quite reasonable. It follows that 
the answer to the criticism of Perry et al., would seem to lie elsewhere, if at  all. The 
criticism of Perry et al., will now be examined in detail and shown to be un- 
founded. 

At large values of the product of distance from the wall and the stress gradient, 
Townsend’s (1961)  modified law of the wall reduced to (34). According to Perry 
et al., the available measurements do not agree with either the slope or the additive 
constant B of the half-power law given by (34). Perry et al. found empirically that 
the slope on a half-power law plot of a number of measured velocity profiles was 
given by 4.17(a0/p)4,  rather than the values 2 / ~ , ( a , / p ) &  predicted by the modified 
law of the wall if the stress gradient, a, were equated to the pressure gradient, 
a,. However, the present author found by surveying the available theoretical 
and experimental evidence (Newman 1951 ; Bradshaw 1966; Mellor 1966a),  for 
mild pressure gradients in near equilibrium flows the stress gradient was generally 
about 0.7 of the pressure gradient. When this value is used in (34), excellent 
agreement is obtained between the predicted slope according to the modified 
law of the wall and the empirical results of Perry et al .  

Turning to the question of B in (34), Perry et al .  observed that the intercept 
of the 4.17(aO/p)* line with y = 0 ordinate was considerably different from the 
appropriate value of B. Perry et al. claimed that these measured intercepts 
represented measured values of B, and the fact that they disagreed with theory 
cast considerable doubt on the theory. The measured intercepts are reproduced 
from Perry (1966)  and compared to the theoretical values of B in figure 12. The 
key point here is that both Perry (1966)  and Perry et al. (1966)  measured the 
intercept of profiles which had not reached the asymptotic conditions required 
by the theory. This can readily be seen from, for example, figure 8, where two 
typical velocity profiles have been plotted. It can be seen that Perry et al. are in 
fact comparing their measurements with the asymptotic form of the modified 
law of the wall, the straight lines shown on figure 8, and evidently they ought to 
compare their measurements with the full versions of the modified law of the 
wall, since within the range of y presented there is still a considerable difference. 



Eflect of pressure gradient on the law of the wall 33 1 

The theoretical profiles can only be expected to give reasonable answers as far as 
y N 0-2A, A being the boundary-layer thickness, in view of the mixing length 
model used in the analysis. The profiles in figure 8 never obtain the asymptotic 
state within this range of y less than 0.2 of the boundary-layer thickness, and this 
inability is a feature of most low pressure gradient boundary layers. Furthermore, 
both the theoretical and experimental profiles show a near linear behaviour on a 
square root abscissa in the pre-asymptotic state, thus making the empirical half- 

Pressure gradient parameter, a;l = - - (p:: Z) - l  

FIGURE 12. The slip velocity U , / U ,  as a function of the streamwise pressure gradient. 
Measured slip velocities reproduced from Perry (1966). 0, Perry (1966); x , Schubauer & 
Klebanoff (1951); a, 8, Perry, Bell & Jubert (1966); +, Johnston (1957); --, 
Townsend theory (1961), B+ = 4.9, A = 1.0; - -, Perry (1966). 

power law of Perrry et al. a good fit to the measured profiles but, nevertheless, not 
really in contradiction to the modified law of the wall. It might also be noted 
that the foregoing is not a criticism of the velocity profile correlation of Perry 
et al., since their correlation is empirical fact and stands as such. It is, however, 
a criticism of their objections to the modified law of the wall. 

Another point which must be examined concerning the velocity profiles near 
the wall, is the disagreement observed between the empirical half-power law of 
Perry et al. and the profiles measured after a prolonged pressure rise, by Perry 
(1966). In this case, the velocity profiles initially were in good agreement with 
the empirical law, but, as the flow progressed, the agreement deteriorated, 
although the pressure gradient parameter, a,, was small. As mentioned earlier, 
an estimate of the stress gradient was made using (23) with a value of b, of 
1/14. This gave a ratio of stress to pressure gradient of approximately 0.7, and the 
velocity profiles were then calculated according to the present note and are 
compared with Perry’s measurements in figures 13 and 14. It can be seen that 
exactly the same trend of deteriorating agreement between theory and experi- 



332 Henry McDonald 

ment as Perry found, using his semi-empirical velocity profile, is also obtained 
with the modified law of the wall. However, the measured velocity profiles do 
continue to vary as the square root of y, so that the observed departure from the 
predicted profiles could be explained by the actual ratio of stress to pressure 
gradient being much less than the assumed value of around 0-7 .  Since Perry did 
not measure the turbulent shear stress distribution this explanation can only 
remain speculative, but experience with similar types of boundary layers indicates 
that it is not an improbable suggestion. With this suggested explanation in 
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Distance from the wall, (y*)i  
FIGURE 13. Further comparison between the measured velocity profiles of Perry and theory. 
Theory: a N 0 . 7 ~ ~  and a, as measured; -- , B = 0.0; ---, = 0.2. Measure- 
ments of Perry (1966): 0, 5.5 ft. station, a, = 0.00456; 0, 7 ft. station, a, 2: 0.007; A ,  
8-5 ft. station, a. N 0.007; 0, 10 ft .  station, a, 2: 0.007. 

mind, Newman’s (1951) boundary-layer velocity profiles, which are very similar 
in many respects to Perry’s, were examined. In  this instance, the turbulent shear 
stress distribution normal to the wall was measured by Newman so that no 
problem arose in this respect. When the predicted and measured profiles were 
compared, good agreement was obtained throughout the length of the boundary- 
layer development, as may be seen in figure 15. As the separation point was 
approached in Newman’s case, the ratio of stress to pressure gradient dropped 
lower than one-third and, if these sort of figures were applied in Perry’s case, 
much better agreement between theory and experiment would result. Therefore, 
in the light of Newman’s measurements, it would seem that quite accurate 
predictions of the velocity profiles near the wall can be made if the stress gradient 
is known, and that the unknown stress gradient is the real source of discrepancy 
between theory and experiment in the case of Perry’s predictions. 

Perry has attempted to explain the observed discrepancies mentioned in the 
previous paragraph by introducing a rate of change of pressure gradient contribu- 
tion to the velocity profile. Obviously, the more local and higher-order conditions 
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FIGVRE 14. Further comparison between the measured velocity promes of Perry and theory; 
continued. ~ , theory a N 0.7a0 and a, measured, B = O.O,m, A, + , measurements 
of Perry (1966), stations 5 = 11, 12, 5, 14 and 15 ft., a, = 0.0089, 0-0114, 0.0196 and 
0.025 respectively. 
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FIGURE 15. A comparison between the measured velocity profiles of Newman (1951) and 
theory. Measured: 0, station A, C ,  = 0.00195, a, = 0.0064, a = 0.0035; X ,  station B, 
C ,  = 0.00158, a, = 0.0083, a = 0.0052; 0, station C ,  C ,  = 0.00117, a, = 0.0114, 
a = 0.0079; A, station D, Cf = 0.00091, a, = 0.0246, a = 0.012; +, station E, C, = 
0.0055, a, = 0.054, a = 0-0162; V, station P ,  C ,  = 0.00018, a, = 0-3, a = 0.1; 0, 
station B, Cf = 0.0, a, = 10, a = 9.2. Theory: ~ , B = 0.0, a, and a as measured. 
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that are introduced to specify the velocity profile, the more likely it is that the 
profiles being correlated will have had a similar upstream history, and hence, 
have a similar stress gradient. As a result, an improved correlation ought to be 
obtained. This seems, to the present author, rather circuitous and it would almost 
certainly be much more rewarding to  simply try and correlate the stress gradient. 
The previous remarks illustrate a basic objection the present author has to an 
entirely empirical approach, since it provides so little physical insight into the 
problem. 

0 0002 0.004 

Turbulent shear stress coefficient, - uT/ui 
FIGURE 16. The measured shear stress profiles of Newman (1951). - , aT/ay = d p p x ;  
0, station A ;  x ,  station B ;  0, station C ;  A ,  station D ;  +, station E ;  0, station 3’; 
0, station G. 

The assumption of turbulent shear stress linearity near the wall is justified by 
the hot-wire measurements of turbulent shear stress made by Schubauer & 
Klebanoff (3951), Newman (1951), Bradshaw & Ferriss (1965), Bradshaw 
(1966), and Spangenberg et al. (1967). As a typical example, Newman’s (1951), 
stress measurements previously used to construct the velocity profiles shown in 
figure 15, are presented in figure 16. 

Lastly, no comparisons between predicted and measured velocity profiles in a 
favourable pressure gradient have been presented since in examining the strong 
favourable pressure gradient data see, for instance, Patel (1965), the problem 
of transition reversal is encountered and makes comparisons rather meaningless. 
In the case of the weak favourable pressure gradient data, no significant de- 
partures from the law of the wall are expected or observed (Patel 1965). 

Conclusions 

mental evidence, the following conclusions have been reached. 
On the basis of the analysis described herein and comparisons with experi- 
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The velocity profile across the viscous sublayer seems to be quite insensitive to 
possible changes in the stress gradient from its value at  the wall. In  other words, 
the so-called ‘inertia effect’ on the integrated velocity profile is small in the 
viscous sublayer. In  contrast, however, in the fully developed turbulent flow 
region close to the wall, inertia effects are appreciable. 

In  view of previous conclusions, it would appear that a simple correction is 
possible to account for pressure gradient effects on any sublayer skin friction 
meter which depends for its calibration on the existence of a universal velocity 
profile family in the sublayer. Since inertia effects are not significant on the sub- 
layer velocity profile, it would be expected that the additional calibration factor 
for such a skin friction meter would be simply the non-dimensional pressure 
gradient parameter, a, = (v/pu:) (dp/dz). 

Inclusion of the effect of pressure-velocity diffusion of turbulent energy in the 
modified law of the wall velocity profile was found to result in a small, generally 
favourable, improvement on the comparisons between predicted and measured 
velocity profiles outside the viscous sublayer. This small effect is not thought 
significant when compared to the uncertainties in the stress-pressure gradient 
relationship. 

When Townsend’s modified law of the wall is utilized with the additive 
constants of the present note, together with either measured or estimated stress 
gradients, good agreement between measured and predicted velocity profiles 
is obtained. 

The author wishes to express his thanks to Dr B. G. Newman for making avail- 
able tabulated values of his experimental profiles, and to Dr P. N. Joubert for 
making available tabulated values of Dr A. E. Perry’s measurements. 
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